Using Neuro-fuzzy Technique
نویسندگان
چکیده
Nonlinear system identification is becoming an important tool which can be used to improve control performance. This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for controlling a car. The vehicle must follow a predefined path by supervised learning. Back-propagation gradient descent method was performed to train the ANFIS system. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in controlling the non linear system.
منابع مشابه
Neuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements
In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...
متن کاملA NEURO-FUZZY TECHNIQUE FOR DISCRIMINATION BETWEEN INTERNAL FAULTS AND MAGNETIZING INRUSH CURRENTS IN TRANSFORMERS
This paper presents the application of the fuzzy-neuro method toinvestigate transformer inrush current. Recently, the frequency environment ofpower systems has been made more complicated and the magnitude of the secondharmonic in inrush current has been decreased because of the improvement of caststeel. Therefore, traditional approaches will likely mal-operate in the case ofmagnetizing inrush w...
متن کاملA Genetic Based Neuro Fuzzy Technique for Process Grain Sized Scheduling of Parallel Jobs
Problem statement: In this study, we present the development of genetic algorithm based neuro fuzzy technique for process grain sized in scheduling of parallel jobs with the help of real lIfe workload data. Approach: The study uses the rule based scheduling strategy for the scheduling and classIfies all possible scheduling strategies. The rule bases are developed with the help of the neuro fuzz...
متن کاملADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملCalibrating Function Points Using Neuro-Fuzzy Technique
The concepts of calibrating Function Points are discussed, whose aims are to fit specific software application, to reflect software industry trend, and to improve cost estimation. Neuro-Fuzzy is a technique which incorporates the learning ability from neural network and the ability to capture human knowledge from fuzzy logic. The empirical validation using ISBSG data repository Release 8 shows ...
متن کاملDesign and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System
Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....
متن کامل